Action of HCl upon the $\mathrm{Pt}-\mathrm{C}$ bonds in $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{4}\right]$ and $\left[\mathrm{NBu}_{4}\right]_{2} \mid$ trans $\left.-\mathrm{PtCl}_{2}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{2}\right]$: synthesis of tris(pentachlorophenyl), $\left[\mathrm{NBu}_{4}\right]\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{3} \mathrm{~L}\right]$ and dichloro-monopentachlorophenyl-platinate(II), $\left[\mathrm{NBu}_{4}\right]\left[\mathrm{PtCl}_{2}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right) \mathrm{L}\right]$, complexes

Rafael Usón, Juan Forniés, Milagros Tomás, Irene Ara and Babil Menjón
Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-C.S.I.C., 50009-Zaragoza (Spain)

(Received May 15th, 1987)

Abstract

The reaction of HCl on $\left(\mathrm{NBu}_{4}\right)_{2}\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{4}\right]$ or $\left(\mathrm{NBu}_{4}\right)_{2}\left[\right.$ trans $\left.-\mathrm{PtCl}_{2}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{2}\right]$ can be interrupted after the elimination of one $\mathrm{C}_{6} \mathrm{Cl}_{5}$ ligand in the presence of one molar proportion of a neutral ligand L , to give $\left(\mathrm{NBu}_{4}\right)\left[\mathrm{Pt}_{\mathrm{C}}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{3} \mathrm{~L}\right]$ or, $\left(\mathrm{NBu}_{4}\right)\left[\mathrm{PtCl}_{2}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right) \mathrm{L}\right]$, respectively. When L is tetrahydrothiophene, it can be displaced by other neutral ligands, and this is of special value in the case of readily protonated ligands. When bidentate ligands ($\mathrm{L}-\mathrm{L}=$ dppe, $4,4^{\prime}$-bipy) are used, the products are binuclear complexes. Finally, $\left(\mathrm{NBu}_{4}\right)\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{3}(\mathrm{CO})\right](\mathrm{X}=\mathrm{F}, \mathrm{Cl})$ can be obtained by a ligand rearrangement reaction between $\left(\mathrm{NBu}_{4}\right)_{2}\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{4}\right]$ and cis- $\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2}(\mathrm{CO})_{2}$.

Introduction

Under certain conditions [1] arylation of $\mathrm{PtCl}_{2}(\text { tht })_{2}$ ($\mathrm{tht}=\mathrm{SC}_{4} \mathrm{H}_{8}$, tetrahydrothiophene) with $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{Li}$ gives $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(\mathrm{tht})\right]^{-}$, the tht ligand of which can be readily displaced by other neutral ligands. When $\mathrm{C}_{6} \mathrm{Cl}_{5} \mathrm{Li}$ is employed, only trans $-\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{2}(\mathrm{tht})_{2}$ is isolated.

The $1 / 1$ reaction between $\left(\mathrm{NBu}_{4}\right)_{2}\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ and HCl gives $\left(\mathrm{NBu}_{4}\right)_{2}[\mathrm{PtCl}-$ $\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]$, from which other similar anions $\left[\operatorname{PtX}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]^{2-}(\mathrm{X}=\mathrm{Br}, \mathrm{I}, \mathrm{CN}, \mathrm{SCN})$ can be prepared [2]. With a $1 / 2$ ratio, the binuclear $\left(\mathrm{NBu}_{4}\right)_{2}\left[\mathrm{Pt}(\mu-\mathrm{Cl})\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]_{2}$ is obtained in good yield. The analogous $1 / 1$ reaction starting from $\left(\mathrm{NBu}_{4}\right)_{2}[\mathrm{Pt}$ $\left.\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{4}\right]$ gives a mixture of $\left(\mathrm{NBu}_{4}\right)_{2}\left[\mathrm{Pt}(\mu-\mathrm{Cl})\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{2}\right]_{2}$ [3], unchanged $\left(\mathrm{NBu}_{4}\right)_{2}{ }^{-}$ $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{4}\right]$, and probably some $\left(\mathrm{NBu}_{4}\right)_{2}\left[\mathrm{PtCl}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{3}\right]$, but the similar solubilities of all these species prevent isolation of the latter, if it is present at all. The
analogous $1 / 2$ reaction gives only the binuclear derivative $\left(\mathrm{NBu}_{4}\right)$, $\mathrm{Pt}(\mu-\mathrm{Cl})\left(\mathrm{C}_{6}\right.$ $\left.\mathrm{Cl}_{5}\right)_{2} \mathrm{I}_{2}$. in high yield (-85%).

The methods which lead to tris(pentafluorophenyl) anions of the types $\left.\left[\mathrm{Pt}_{6} \mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{~L}\right]$ or $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]^{2-}$ are thus ineffective for the synthesis of uis(penta-
 tris(pentachlorophenvl) platinate(II), obtained [4] by treatment of the platinum(II)
 yield).

We thus decided to reexamine the action of HCl upon some anionic platinum precursors, namely $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{1}\right]^{2}$ and $\left[\text { trans- } \mathrm{PtCl}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]^{2}$. The study has led to the preparation of complexes containing the anons $[\mathrm{Pt}(\mathrm{C}, \mathrm{Cl}), \mathrm{C}]$ or $\left[\mathrm{PtCl}\left(\mathrm{C}_{0}\right.\right.$ $\left(\mathrm{Cl}_{5}\right) \mathrm{Ll}^{\prime}$

Results and discussion

(a) Reaction of $\left(\mathrm{NBu}_{4}\right)_{2}\left[\mathrm{Pt}_{\mathrm{C}} \mathrm{C}_{2}\left(\mathrm{l}_{5}\right)_{4}\right]$ with one equicalent of $\mathrm{HC} /$ in the presence of a neutral ligand L.

The action of HCl on $\left.\left(\mathrm{NBu}_{4}\right)_{2}\left[\mathrm{Pt}_{6} \mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{4}\right]$ is known to lead to cleavage of two $\mathrm{Pt}-\mathrm{C}_{6} \mathrm{Cl}_{5}$ bonds and formation of the binuclear $\left(\mathrm{NBu}_{4}\right)_{2}\left[\mathrm{Pt}(\mu-\mathrm{Cl})(\mathrm{C}, \mathrm{Cl})_{2}\right]_{2}[3]$. but if the process takes place stepwise there should be a possibility of interrupting it after the cleavage of the first $\mathrm{Pt} \mathrm{C}_{6} \mathrm{Cl}_{3}$ bond if a neutral ligand is prement This has been shown to be the case (eq. I) for $\mathrm{L}=\mathrm{PPh}_{2}$. PPh_{2} Me. ShPh, , the (tetrahydrothiophene), $\mathrm{NC}_{5} \mathrm{H}_{5}$ (pv)
$\left(\mathrm{NBu}_{4}\right)_{2}\left[\mathrm{Pt}_{4}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right]+\mathrm{HCl}+\mathrm{L} \rightarrow\right.$

$$
\begin{aligned}
& \left.\left(\mathrm{NBu}_{4}\right)\left[\mathrm{Pt}_{(\mathrm{C}}^{6} \mathrm{Cl}_{4}\right)_{3} \mathrm{~L}\right]+\mathrm{HC}_{4} \mathrm{Cl}_{5}+\mathrm{NBu}_{4} \mathrm{Cl} \\
& \hline
\end{aligned}
$$

($\mathrm{L}=\mathrm{PPh}_{3}$ (I). $\mathrm{PPh}_{2} \mathrm{Me}(\mathrm{II}) . \mathrm{SbPh}_{3}$ (HI), tht (IV). $\mathrm{NC}_{5} \mathrm{H}_{5}$ (V)
The complexes I-IV were isolated in $68-82 \%$ yields.
When $\mathrm{L}=$ py protonation of the ligand is likely to occur to some extent. and the yield of complex V is much lower (-15%).
(b) Displacement of the from $1 N B u_{1} /\left[\mathrm{Pt}\left(\mathrm{C}_{0} \mathrm{Cl}_{5}\right)_{3}(\right.$ tht $\left.)\right]$ by neutral ligands

The complex $\left(\mathrm{NBu}_{4}\right)\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{3}\right.$ (tht) $]$, can be used as a precursor for the synthesis of other complexes containing more basic neutral ligands. especially. those which can be partially protonated under the conditions described under above (sect. a) (eq. 2).
$\left(\mathrm{NBu}_{4}\right)\left[{\left.\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{3}(\mathrm{tht})\right]+\mathrm{L} \rightarrow \mathrm{tht}+\left(\mathrm{NBu}_{4}\right)\left[\mathrm{Pt}_{\mathrm{p}}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{3} \mathrm{~L}\right]}^{2}\right]$
($\mathrm{L}=\mathrm{py}(\mathrm{V}) . \mathrm{PEt}_{3}(\mathrm{VI})$. CO (VII)
The reactions were carried out in refluxing toluene (V and V) or in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature (VII).

Binuclear complexes can be obtained by use of bidentate ligands (L L) in suitable molar ratio (eq. 3)

$$
\begin{align*}
& 2\left(\mathrm{NBu}_{4}\right)\left[\mathrm{Pt}_{\left.\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{3}(\mathrm{tht})\right]+\mathrm{L}-\mathrm{L} \rightarrow\left(\mathrm{NBu}_{4}\right)_{2}\left[\left\{\mathrm{Pt}_{6}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{3}\right\}_{2}(\mu-\mathrm{L}-\mathrm{L})\right]}^{\left(\mathrm{L}=\operatorname{dppe}(\mathrm{VIII}), 4.4^{*} \text { bipy }(\mathrm{IX})\right.} .\right. \tag{3}
\end{align*}
$$

(c) Reaction of $\left(\mathrm{NBu}_{4}\right)_{2}$ [trans- $\mathrm{PtCl}_{2}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{2}$] with $\mathrm{HCl}(1 / 1)$

The reaction between $\left(\mathrm{NBu}_{4}\right)_{2}\left[\right.$ trans $\left.-\mathrm{PtCl}_{2}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{2}\right]$ and HCl (molar ratio 1/1) results in the cleavage of only one $\mathrm{Pt}-\mathrm{C}_{6} \mathrm{Cl}_{5}$ bond, and the formation of the binuclear $\left(\mathrm{NBu}_{4}\right)_{2}\left[\operatorname{Pt}(\mu-\mathrm{Cl}) \mathrm{Cl}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\right]_{2}(\mathrm{X})(77 \%$ yield) (eq. 4)
$\left(\mathrm{NBu}_{4}\right)_{2}\left[\right.$ trans- $\left.\mathrm{PtCl}_{2}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{2}\right]+\mathrm{HCl} \rightarrow\left(\mathrm{NBu}_{4}\right)_{2}\left[\mathrm{Pt}(\mu-\mathrm{Cl}) \mathrm{Cl}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\right]_{2}$
Complex X reacts with PPh_{3} in acetone to give the mononuclear derivative $\left(\mathrm{NBu}_{4}\right)\left[\right.$ trans $\left.-\mathrm{PtCl}_{2}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\left(\mathrm{PPh}_{3}\right)\right]$ (XII). Mononuclear complexes $\left(\mathrm{NBu}_{4}\right)[$ trans$\left.\mathrm{PtCl}_{2}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right) \mathrm{L}\right]$ can also be obtained by treating $\left(\mathrm{NBu}_{4}\right)_{2}\left[\right.$ trans $\left.-\mathrm{PtCl}_{2}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{2}\right]$ with HCl in the presence of ligand L .
(d) Reaction of $\left(\mathrm{NBu}_{4}\right)_{2}\left[\right.$ trans $\left.-\mathrm{PtCl}_{2}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{2}\right]$ with $\mathrm{HCl}(1 / 1)$ in the presence of a neutral ligand L

The principles of the above proces (eq. 1) can also be extended to similar systems, and thus the $1 / 1$ reaction of $\left(\mathrm{NBu}_{4}\right)_{2}\left[\mathrm{PtCl}_{2}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{2}\right]$ with HCl in dichloromethane solution in the presence of a neutral ligand L gave complexes of the type $\left(\mathrm{NBu}_{4}\right)\left[\mathrm{PtCl}_{2}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right) \mathrm{L}\right]$ (eq. 5).
$\left(\mathrm{NBu}_{4}\right)_{2}\left[\right.$ trans $\left.-\mathrm{PtCl}_{2}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{2}\right]+\mathrm{HCl}+\mathrm{L} \rightarrow$

$$
\begin{equation*}
\left(\mathrm{NBu}_{4}\right)\left[\mathrm{PtCl}_{2}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right) \mathrm{L}\right]+\mathrm{HC}_{6} \mathrm{Cl}_{5}+\mathrm{NBu}_{4} \mathrm{Cl} \tag{5}
\end{equation*}
$$

($\mathrm{L}=$ tht $(\mathrm{XI}), \mathrm{PPh}_{3}(\mathrm{XII}), \mathrm{SbPh}_{3}$ (XIII))
Complexes XI-XIII have a trans-structure as indicated by their IR spectra (see below), and thus these reactions (eq. 5) occur with stereoretention.
(e) Displacement of tht in $\left(\mathrm{NBu}_{4}\right)\left[\right.$ trans- $\mathrm{PtCl}_{2}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)($ tht $\left.)\right]$ by other neutral ligands
$\left(\mathrm{NBu}_{4}\right)\left[\mathrm{PtCl}_{2}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\right.$ (tht)] reacts with one equivalent of pyridine in refluxing toluene/dichloromethane (9/1) to give $\left(\mathrm{NBu}_{4}\right)\left[\mathrm{PtCl}_{2}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\right.$ (py)] (XIV). None of the chloride ligand is displaced, and the reaction occurs with stereoretention.
(f) Synthesis of $\left(\mathrm{NBu}_{4}\right)\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{3}(\mathrm{CO})\right]$ by ligand rearrangement

The room temperature (1/1) reaction between $\left(\mathrm{NBu}_{4}\right)_{2}\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{4}\right]$ and cis- Pt $\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{2}(\mathrm{CO})_{2}[5]$ in dichloromethane solution affords a tris-arylated derivative (eq. 6).

This reaction takes ca. 3 days for completion, and its course can be monitored by examining the IR spectrum of the solution, since the two $\nu(\mathrm{CO})$ bands at 2158 and $2123 \mathrm{~cm}^{-1}$, due to cis- $\operatorname{Pt}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)(\mathrm{CO})_{2}$, slowly disappear as a band at $2073 \mathrm{~cm}^{-1}$ due to $\left(\mathrm{NBu}_{4}\right)\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{3}(\mathrm{CO})\right]$ (VII) grows progressively, and is ultimately the only one present.

Other cis- $\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{2} \mathrm{~L}_{2}$ derivatives (e.g., $\mathrm{L}=\mathrm{tht}$) do not react with $\left(\mathrm{NBu}_{4}\right)_{2}\left[\mathrm{Pt}^{\left.\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{4}\right] \text {. On the other hand, the } \mathrm{CO} \text { ligand in complex VII cannot be }}\right.$ displaced by other neutral ligands $\left(\mathrm{PPh}_{3}\right.$ does not displace CO either at room temperature or in refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

Table 1
Analytical data, conductivities and melting points

Complex		Analyses (Found. (calcd) (i)				$\begin{aligned} & \text { An } \\ & \text { mhn } \\ & \text { mol }^{-3} \end{aligned}$	m^{2}	$\begin{gathered} \mathrm{MP} \\ (\%) \end{gathered}$
		C	H	N	(1)			
$\left(\mathrm{NBu}_{4}\right)\left[\mathrm{Pt}_{\left.\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{3}\left(\mathrm{PPh}_{3}\right)\right]}\right.$	(I)	$\begin{gathered} 43.49 \\ (43.13) \end{gathered}$	$\begin{gathered} 3.49 \\ (3.52) \end{gathered}$	$\begin{gathered} 0.88 \\ (0.96) \end{gathered}$	$\begin{array}{r} 3752 \\ \{6.38\} \end{array}$	$4)$		201
$\left(\mathrm{NBu}_{4}\right)\left[\mathrm{Pt}_{\left.\left(\mathrm{C}_{0} \mathrm{Cl}_{5}\right)_{3}\left(\mathrm{PMePh}_{2}\right)\right]}\right.$	(11)	$\begin{gathered} 40.9 \\ (40.7) \end{gathered}$	$\begin{gathered} 3.3 \\ (2,5) \end{gathered}$	$\begin{gathered} 1.0 \\ (1.0) \end{gathered}$	$\begin{gathered} 3750 \\ (39,871 \end{gathered}$	So		170
$\left.\left(\mathrm{NBu}_{4}\right)\left[\mathrm{Pt}_{\left(\mathrm{C}_{6}\right.} \mathrm{Cl}_{5}\right)_{3}\left(\mathrm{SbPh}_{3}\right)\right]$	(II)	$\begin{aligned} & 41.0 \\ & (406) \end{aligned}$	$\begin{gathered} 3.3 \\ (3.33 \end{gathered}$	$\begin{gathered} 0.9 \\ (0.9) \end{gathered}$	$\begin{gathered} 34.35 \\ (34.50) \end{gathered}$	88		190
$\left(\mathrm{NBu}_{4}\right)\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{3}(\right.$ tht $\left.)\right]$	(1V)	$\begin{gathered} 36.2 \\ (35.9) \end{gathered}$	$\begin{array}{r} 4.4 \\ 1,4 \end{array}$	(1.1)	$\begin{gathered} 42.46 \\ (41,75) \end{gathered}$	\%		176
$\left(\mathrm{NBu}_{4}\right)\left[\mathrm{Pt}_{\left.\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{3}(\mathrm{py})\right]}\right.$	(V)	$\begin{gathered} 370 \\ (370) \end{gathered}$	$\begin{aligned} & 3.1 \\ & 3.21 \end{aligned}$	2.5	$\begin{aligned} & 42016 \\ & (4216) \end{aligned}$	83		192
$\left(\mathrm{NBu}_{4}\right)\left[\mathrm{Pt}_{\left.\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{3}\left(\mathrm{PEt}_{5}\right)\right]}\right.$	(VI)	$\begin{gathered} 37.6 \\ (36.8) \end{gathered}$	$\begin{gathered} 4.0 \\ (3.9) \end{gathered}$	$\begin{aligned} & 1.1 \\ & 1.0) \end{aligned}$	$\begin{gathered} 40.23 \\ (40.79) \end{gathered}$	86		157
$\left(\mathrm{NBu}_{4}\right)\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{3}(\mathrm{CO})\right]$	(MI)	$\begin{gathered} 35.1 \\ (34.6) \end{gathered}$	$\begin{array}{r} 3.1 \\ (3.0) \end{array}$	$\begin{aligned} & 1.3 \\ & 11.23 \end{aligned}$	$\begin{aligned} & 43.23 \\ & 14.321 \end{aligned}$	119		182(d)
$\left(\mathrm{NBu}_{4}\right)_{2}\left[\left(\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{Cl} \mathrm{C}_{5}\right)_{3}\right\}_{2}(\mu\right.$-dppe $\left.)\right]$	(VIII)	$\begin{gathered} 41.3 \\ (40.8) \end{gathered}$	$\begin{gathered} 3.4 \\ (3.5) \end{gathered}$	$\begin{gathered} 10 \\ (10) \end{gathered}$	$7,6$ 138.48)	148		136
$\left.\left(\mathrm{NBu}_{4}\right)_{2}\left[\left(\mathrm{Pt}_{(\mathrm{C}}^{6} \mathrm{Cl}\right)_{5}\right)_{3}\right\}_{2}\left(\mu-4.4{ }^{\prime} \text { - bipy }\right)^{\prime}$	(X)	$\begin{gathered} 37.2 \\ (37.0) \end{gathered}$	$\begin{array}{r} 30 \\ (3.1) \end{array}$	$\begin{gathered} 2.2 \\ (2.2) \end{gathered}$	$\begin{aligned} & 41.58 \\ & (4)(18) \end{aligned}$	108		$232 \mathrm{~d})$
	(X)	$\begin{array}{r} 35.15 \\ (34.85) \end{array}$	$\begin{array}{r} 4.58 \\ (4.75) \end{array}$	$\begin{gathered} 1.65 \\ (1.84 \end{gathered}$	$\begin{aligned} & 33,23 \\ & (32,74 \end{aligned}$	183		146
$\left(\mathrm{NBu}_{4}\right)\left[\right.$ trans $-\mathrm{PtCl}_{2}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)($ tht $\left.)\right]$	(X1)	$\begin{gathered} 36.8 \\ (36.9) \end{gathered}$	$\begin{gathered} 55 \\ (5.2) \end{gathered}$	$\begin{gathered} 20 \\ (1.6) \end{gathered}$	$\begin{array}{r} 28.24 \\ (29.33) \end{array}$	9		$14 *$
$\left(\mathrm{NBu}_{4}\right)\left[\right.$ trans $\left.-\mathrm{PtCl}_{2}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\left(\mathrm{PPh}_{3}\right)\right]$	(XII)	$\begin{gathered} 47.5 \\ (47.0) \end{gathered}$	$\begin{gathered} 4 . \% \\ (5.0) \end{gathered}$	$\begin{gathered} 1.4 \\ (1.4) \end{gathered}$	$\begin{array}{r} 23.33 \\ (2+32) \end{array}$	83		171
$\left(\mathrm{NBu}_{4}\right)$ tranc- $\mathrm{PtCl}_{2}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\left(\mathrm{SbPh}_{3}\right)^{\text {d }}$	(XIH)	$\begin{aligned} & 43.9 \\ & (43.2) \end{aligned}$	$\begin{aligned} & 4.3 \\ & (4.6) \end{aligned}$	$\begin{gathered} 1.2 \\ (1.3) \end{gathered}$	$\begin{aligned} & 22.24 \\ & (2,34) \end{aligned}$	84		187(d)
$\left(\mathrm{NBu}_{4}\right) \mid$ trans $-\mathrm{PtCl}_{2}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\left(\mathrm{py}^{\prime}\right)$	(XIV)	$\begin{gathered} 38.1 \\ (38.7) \end{gathered}$	$\begin{gathered} 4.6 \\ (4.9) \end{gathered}$	$\begin{array}{r} 3.4 \\ (3.3) \end{array}$	$\begin{aligned} & 99.61 \\ & 29.651 \end{aligned}$	95		177
$\left(\mathrm{NBu}_{4}\right)\left[\mathrm{Pl}_{\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(\mathrm{CO})\right]}\right.$	(XV)	$\begin{gathered} 43.72 \\ (43.48) \end{gathered}$	$\begin{gathered} 3.82 \\ (3.72) \end{gathered}$	$\begin{aligned} & 1.69 \\ & 1.451 \end{aligned}$	\cdots	110		$1.34(\mathrm{~d})$

However $\left(\mathrm{NBu}_{4}\right)\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{7}(\mathrm{CO})\right](\mathrm{XV})$ can be synthesized by the same procedure (eq. 5).

Analytical ($\mathrm{C} . \mathrm{H}, \mathrm{N}, \mathrm{Cl}$) and other data for complexes I-XV are listed in Table 1.

Infrared spectra

Characteristic absorptions of the new complexes are summarized in Table 2. All the pentachlorophenyl derivatives show absorptions near 1200 and in the range $600-700 \mathrm{~cm}^{-1}$ corresponding to internal vibrations of the $\mathrm{C}_{6} \mathrm{Cl}_{5}$ group, along with vibrations at ca. $800 \mathrm{~cm}^{-1}$ due to the X -sensitive mode [6] and at ca. $600 \mathrm{~cm}^{-1}$ due to $\boldsymbol{v}(\mathrm{Pt}-\mathrm{C})$ [7]. Three active absorptions $\left(C_{20}, 2 \mathrm{~A}_{1}+\mathrm{B}_{1}\right)$ due to the X -sensitive or $\nu(\mathrm{M}-\mathrm{C})$ modes are expected for complexes of the type ($\left.\mathrm{NBu}_{4}\right)\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{Cl}_{5}\right)_{5} \mathrm{~L}\right]$, though these absorptions can actually be observed only in some cases (see Table 2). as was the case for $\left(\mathrm{NBu}_{4}\right)\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{~L}\right]$ complexes [1]. For the complexes $\left(\mathrm{NBu}_{4}\right)\left[\right.$ trans- $\left.\mathrm{PtCl}_{2}\left(\mathrm{C}_{4} \mathrm{Cl}_{5}\right) \mathrm{L}\right]$ only one absorption due to the X -sensitive mode and
another due to $\nu(\mathrm{Pt}-\mathrm{C})$ were expected, and these were found. These complexes also show in the $350-320 \mathrm{~cm}^{-1}$ range a strong, absorption along with a weak one, due to $\left.\nu(\mathrm{Pt}-\mathrm{Cl}) C_{2 v}, \mathrm{~A}_{1}+\mathrm{B}_{1}\right)$. Since two absorptions are also expected for the cis-isomers ($C_{s}, 2 \mathrm{~A}^{\prime}$), there is some ambiguity, but the very different intensities of the two bands points out to the trans formulation [5].

Absorptions due to the neutral ligand L are also present (Table 2). For instance, in the spectra of the carbonyl derivatives, $\nu(\mathrm{CO})$ appears at $2.073 \mathrm{~cm}^{-1}$ for VII and $2084 \mathrm{~cm}^{-1}$ for XV , in accordance with earlier observations on other types of pentachloro- or pentafluoro-phenylcarbonylplatinum derivatives [5].

Experimental

Microanalyses ($\mathrm{C}, \mathrm{H}, \mathrm{N}$) were carried out by Mr. F. Ortego and his staff in this Laboratory, with a Perkin-Elmer 240 microanalyzer. IR spectra were recorded on a Perkin-Elmer 599 spectrophotometer ($4000-200 \mathrm{~cm}^{-1}$) using Nujol mulls between polyethylene sheets. Conductivities were measured in approx. $5 \times 10^{-4} \mathrm{M}$ acetone solutions with a Philips PW 9501/01 conductimeter. $\left(\mathrm{NBu}_{4}\right)_{2}\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{4}\right](\mathrm{X}=\mathrm{F}$ [1], $\mathrm{X}=\mathrm{Cl}[3])\left(\mathrm{NBu}_{4}\right)_{2}\left[\right.$ trans $\left.-\mathrm{PtCl}_{2}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{2}\right]$ [3] and cis $-\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2}(\mathrm{CO})_{2}$ [5] were prepared as described previously.

Synthesis of $\left(\mathrm{NBu}_{4}\right)\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{3} L\right]\left(L=\mathrm{PPh}_{3}(I), \mathrm{PMePh}_{2}(I I), \mathrm{SbPh}_{3}\right.$ (III), $\mathrm{SC}_{4} \mathrm{H}_{8}$ (IV), $\mathrm{NC}_{5} \mathrm{H}_{5}(\mathrm{~V})$)
 (0.298 mmol), V: $0.21 \mathrm{~g}(0.123 \mathrm{mmol})$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was added a molar equivalent of the ligand $\mathrm{L}\left(\mathrm{I}:\left(\mathrm{PPh}_{3}\right), 0.1094 \mathrm{~g}(0.4173 \mathrm{mmol})\right.$; II: $\left(\mathrm{PMePh}_{2}\right) 57.2 \mu \mathrm{l}$, (0.298 mmol); III: $\left(\mathrm{SbPh}_{3}\right), 0.1032 \mathrm{~g},(0.298 \mathrm{mmol})$, IV: (tht), $26.37 \mu \mathrm{l},(0.298$ mmol); V: (py), $0.1 \mathrm{ml}(1.23 \mathrm{mmol})$) together with a solution of HCl in methanol $(0.464 N)(I: 0.899 \mathrm{ml}(0.4173 \mathrm{mmol})$; II, III, IV: $0.64 \mathrm{ml}(0.298 \mathrm{mmol}) ; \mathrm{V}: 2.57 \mathrm{ml}$, $(1.23 \mathrm{mmol})$). The mixture was stirred at room temperature for 1 h , then evaporated to dryness, and the residue was treated with ${ }^{i} \mathrm{PrOH}$. The resulting white solids were washed with n-hexane. Yields: I, 80%; II, 68%; III, 70%, IV, 82%, V, 15%.

Synthesis of $\left(\mathrm{NBu}_{4}\right)\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{3} L\right]\left(L=\mathrm{NC}_{5} \mathrm{H}_{5}(\mathrm{~V}), \mathrm{PEt}_{3}(\mathrm{VI}), \mathrm{CO}\right.$ (VII))
Complexes V and VI. To a suspension of $\left(\mathrm{NBu}_{4}\right)\left[\mathrm{Pt}^{(}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{3}(\mathrm{tht})\right](\mathrm{V}: 0.38 \mathrm{~g}$ (0.298 mmol); VI: $0.15 \mathrm{~g}(0.117 \mathrm{mmol})$) in 10 ml of toluene was added an equimolecular amount of ligand L (V: py $24 \mu 1(0.298 \mathrm{mmol})$; VI: $\mathrm{PEt}_{3}, 17.39 \mu \mathrm{l}$ (0.117 mmol)). The mixture was refluxed for 8 h , then evaporated to dryness, and the residue was treated with ${ }^{i} \mathrm{PrOH}(\mathrm{V})$ or hexane (VI). Complex V was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /{ }^{i} \mathrm{PrOH}$. Yields: V, 72%; VI, 64%.

Complex VII. Carbon monoxide was bubbled at room temperature for 5 h through a solution of $\left(\mathrm{NBu}_{4}\right)\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{3}(\mathrm{tht})\right](0.18 \mathrm{~g}(0.0141 \mathrm{mmol}))$ in 15 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was evaporated to dryness and the white residue washed with n-hexane. Complex VII, 73\% yield.

Synthesis of $\left(N B u_{4}\right)_{2}\left[\left\{\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{3}\right\}_{2}(\mu-L-L)\right](L-L=$ dppe (VIII), 4, 4'-bipy (IX))
To a solution of $\left(\mathrm{NBu}_{4}\right)\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{3}(\mathrm{tht})\right]$ (VIII: $0.6 \mathrm{~g}(0.471 \mathrm{mmol}) ;$ IX: 0.15 g (0.117 mmol)) in 18 ml of toluene and 2 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added a 0.5 molar proportion of ligand L-L (VIII: $0.0938 \mathrm{~g}(0.235 \mathrm{mmol})$ of dppe; IX: $0.009 \mathrm{~g}(0.0589$
Table 2
Relevant ir absorption (cm)

		$\mathrm{C}_{6} \mathrm{x}_{5}$			L	${ }_{2}(\mathrm{Pt}-\mathrm{Cl})$
		(X -sensitive)	$\nu(\mathrm{M}-\mathrm{C})$	others		
$\left(\mathrm{NBu}_{4}\right)\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{3}\left(\mathrm{PPh}_{3}\right)\right]$	(1)	827(m)	615(2), 591(sh)	1211(s). 671 (s)	1093(s), 756(s), 740(s), 705(s), 694(s). $530(\mathrm{~s}), 510(\mathrm{~s}), 490(\mathrm{~s}), 459(\mathrm{w}), 426(\mathrm{w})$	
$\left(\mathrm{NBu}_{4}\right)\left[\mathrm{Pt}_{\left.\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{3}\left(\mathrm{PPh}_{2} \mathrm{Me}\right)\right]}\right.$	(II)	822(m)	593(s)	$1211(\mathrm{~s}), 671(\mathrm{~s})$	$\begin{aligned} & 886(\mathrm{~s}) .882(\mathrm{~s}), 689(\mathrm{~s}) \cdot 515(\mathrm{~s}) \cdot 475(\mathrm{~m}) \\ & 440(\mathrm{~m}) .411(\mathrm{~m}) \end{aligned}$	
$\left(\mathrm{NBu}_{4}\right)\left[\mathrm{Pt}^{\left.\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{3}\left(\mathrm{SbPh}_{3}\right)\right]}\right.$	(III)	824(m)	$\begin{aligned} & 614(\mathrm{sh}), 602(\mathrm{~s}) \\ & 594(\mathrm{~s}) \end{aligned}$	1210(s), 670(3)	$\begin{aligned} & 693(\mathrm{~s}), 461(\mathrm{~s}), 452(\mathrm{~m}), 444(\mathrm{~m}), 268(\mathrm{~m}), \\ & 257(\mathrm{~m}) \end{aligned}$	
$\left(\mathrm{NBu}_{4}\right)\left[\mathrm{Pt}_{\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{3}(\text { tht })}\right]$	(IV)	823 (m)	$\begin{aligned} & 615(\mathrm{sh}) .602(\mathrm{~s}) \\ & 597(\mathrm{~s}) \end{aligned}$	1212(s).669(s)	1204 (s)	
$\left.\left(\mathrm{NBu}_{4}\right)\left[\mathrm{Pt}_{\left(\mathrm{C}_{6}\right.} \mathrm{Cl}_{5}\right)_{3}(\mathrm{py})\right]$	(V)	823 (m)	612(sh).593(m)	1208(s). 669(s)	1602(m). $761(\mathrm{~m}) .696(\mathrm{~m})$	
(NBu_{4}) $\mathrm{Pt}_{\left(\mathrm{C}_{6}\left(\mathrm{Cl}_{5}\right)_{3}\left(\mathrm{PEt}_{3}\right)\right]}$	(VI)	$824(\mathrm{~m})$	591(s)	1208(s).673(s)	767(m), 757(m)	
$\left(\mathrm{NBu}_{4}\right)\left[\mathrm{Pt}_{\left.\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{3}(\mathrm{CO})\right]}\right.$	(VII)	$828(\mathrm{~m})$	$604(\mathrm{~m})$	1212(s). $674(\mathrm{~s})$	2073 (s)	
$\left(\mathrm{NBu}_{4}\right)_{2}\left\{\left(\mathrm{P}^{(}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{3}\right\}_{2}(\mu\right.$-dppe $\left.)\right\}$	(VIII)	824(m)	591(s)	1205(5), 673(5)	$\begin{aligned} & 740(\mathrm{~s}), 699(\mathrm{~s}), 521(\mathrm{~s}), 494(\mathrm{w}), 485(\mathrm{w}) \\ & 445(\mathrm{~m}) \end{aligned}$	
	(IX)	817(m)	$590(\mathrm{~m})$	12124s), 668(s)	$1608(5)$	
	(X)	845(w)	632(s)	1220(s), 673(s)		328(s), 308(s)
$\left(\mathrm{NBu}_{4}\right)\left[\right.$ rans- $\mathrm{Pt}^{\left({ }_{2}{ }_{2}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)(\text { tht })\right]}$	(XI)	838(w)	626(5)	12209m).670(s)		350(vw), 332(s)
	(XII)	$833(\mathrm{~m})$	615 (m)	$1224(\mathrm{~mm}, 668 \mathrm{~s}$)	$\begin{aligned} & 1093(\mathrm{~s}), 747(\mathrm{~s}), 705(\mathrm{~s}), 691(\mathrm{~s}), 528(\mathrm{~s}) \\ & 508(\mathrm{~s}), 495(\mathrm{~s}) \end{aligned}$	$348(\mathrm{vw})$. 325 (s)
	(XIII)	$836(\mathrm{~m})$	618(m)	12209m, 6694 si	692(s), 627(s), 452(s). 262(s)	351(vw), 327(s)
($\mathrm{NBu}_{4}\left\{\right.$ trans- $\mathrm{PtCl}_{2}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right.$) Mpy$\left.)\right\}$	(XIV)	840,w	624(s)	1216(s). 667 (s)	1598(s).758(s). $690(\mathrm{~s}) .641(\mathrm{~m})$	351(vw), 324(s)
$\left.(\mathrm{NBu})_{4}\right){\left.\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(\mathrm{CO})\right]}$	(XV)	$\begin{aligned} & 802(\mathrm{~s}), 791(\mathrm{~m}) \\ & 778(\mathrm{~s}) \end{aligned}$		$\begin{aligned} & 1500(\mathrm{vs}), 1059(\mathrm{vs}) \\ & 955(\mathrm{vs}) \end{aligned}$	$2684(\mathrm{~s})$	

mmol) of 4, 4^{\prime}-bipy). The mixture was refluxed for 3 h (VIII) or 4 h (IX). The crystals which precipitated during the reaction were washed with toluene and n-hexane. Yields: VIII, 89\%, IX, 76\%.

Synthesis of $\left(\mathrm{NBu}_{4}\right)_{2}\left[\mathrm{Pt}(\mu-\mathrm{Cl}) \mathrm{Cl}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\right]_{2}$
$\left(\mathrm{NBu}_{4}\right)_{2}\left[\right.$ trans $\left.-\mathrm{PtCl}_{2}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{2}\right](0.2 \mathrm{~g}, 0.10 \mathrm{mmol})$ in 20 ml of acetone was treated with 0.34 ml of HCl in $\mathrm{MeOH}(0.464 \mathrm{~N})$, after 2 h at room temperature the solution was evaporated to dryness and the residue washed with 10 ml of ${ }^{\mathrm{i}} \mathrm{PrOH}$. Complex $\mathrm{X}, 77 \%$ yield.

Synthesis of $\left(\mathrm{NBu}_{4}\right)\left[\right.$ trans- $\left.\mathrm{PtCl}_{2}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right) L\right]\left(\mathrm{L}=\right.$ tht $\left.(X I), \mathrm{PPh}_{3}(X I I), \mathrm{SbPh}_{3}(X I I I)\right)$
To a solution of $\left(\mathrm{NBu}_{4}\right)_{2}\left[\right.$ trans $\left.-\mathrm{PtCl}_{2}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{2}\right]$ (XI: $0.5 \mathrm{~g}(0.4 \mathrm{mmol})$; XII, XIII: $0.2 \mathrm{~g}(0.16 \mathrm{mmol})$) in 25 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added, a molar proportion of ligand L (XI: $35.3 \mu \mathrm{l}(0.4 \mathrm{mmol})$ of tht; XII; $0.042 \mathrm{~g}(0.16 \mathrm{mmol})$ of PPh_{3}; XIII: 0.0565 g , $(0.16 \mathrm{mmol})$ of SbPh_{3}) and a solution of HCl in methanol (0.464 N) (XI: 0.862 ml (0.4 mmol); XII, XIII: $0.345 \mathrm{ml},(0.16 \mathrm{mmol})$). The mixture was stirred at room temperature for 1 h , then evaporated to dryness, and the residue was treated with 5 ml of ${ }^{\mathrm{i}} \mathrm{PrOH}$. The resulting solids were washed with n -hexane. Yields: XI, 82%; XII, 79%; XIII, 76%.

Synthesis of ($\mathrm{NB} u_{4}$) [trans- $\left.\mathrm{PtCl}_{2}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right) \mathrm{py}\right](\mathrm{XIV})$

To a solution of $\left(\mathrm{NBu}_{4}\right)\left[\right.$ trans $-\mathrm{PtCl}_{2}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)($ tht $\left.)\right](0.16 \mathrm{~g}, 0.189 \mathrm{mmol})$ in 18 ml of toluene and 2 ml of dichloromethane were added $15.26 \mu 1(0.189 \mathrm{mmol})$ of py. The solution was refluxed for 6 h , then evaporated to dryness. The residue was washed with ${ }^{\text {i }} \mathrm{PrOH}$ and n -hexane (Yield: 57\%).

Synthesis of $\left(\mathrm{NBu}_{4}\right)\left[\mathrm{Pt}\left(\mathrm{C}_{6} X_{5}\right)_{3} \mathrm{CO}\right](X=\mathrm{Cl}(\mathrm{VII}), \mathrm{F}(\mathrm{XV}))$
A solution of $\left(\mathrm{NBu}_{4}\right)_{2}\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{4}\right](\mathrm{X}=\mathrm{Cl}, 0.137 \mathrm{~g}(0.082 \mathrm{mmol}) ; \mathrm{X}=\mathrm{F}, 0.23 \mathrm{~g}$ $(0.17 \mathrm{mmol}))$ and $c i s-\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2}(\mathrm{CO})_{2}(\mathrm{X}=\mathrm{Cl}, 0.061 \mathrm{~g},(0.082 \mathrm{mmol}) ; \mathrm{X}=\mathrm{F}, 0.1 \mathrm{~g}$ $(0.17 \mathrm{mmol})$) in 25 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred at room temperature for $5 \mathrm{~min}(\mathrm{X}=\mathrm{F})$ or 3 days $(\mathrm{X}=\mathrm{Cl}$). After filtration the solution was evaporated to ca. 5 ml , and slow diffusion of 40 ml of n -hexane at $-30^{\circ} \mathrm{C}$ gave precipitates of complex VII (60%) or XV (97\%).

References

1 R. Usón, J. Forniés, F. Martínez and M. Tomás, J. Chem. Soc., Dalton Trans., (1980) 888.
2 R. Usón, J. Forniés, M. Tomás and R. Fandos, J. Organomet. Chem., 263 (1984) 253.
3 R. Usón, J. Forniés, F. Martinez, M. Tomás and I. Reoyo, Organoemtallics, 2 (1983) 1386.
4 R. Usón, J. Forniés, M. Tomás, B. Menjón, R. Bau, K. Sünkel and E. Kuwabara, Organometallics, 5 (1986) 1576.

5 R. Usón, J. Forniés, M. Tomás and B. Menjón, Organometallics, 5 (1986) 1581.
6 E. Maslowsky, jun., Vibrational Spectra of Organometallic Compounds, Wiley, New York, 1977, p. 437.

7 J. Casabó, J.M. Coronas and J. Sales, Inorg. Chim. Acta, 11 (1984) 5.

